Evolved patterns and rates of water loss and ion regulation in laboratory-selected populations of Drosophila melanogaster.

نویسندگان

  • Donna G Folk
  • Timothy J Bradley
چکیده

We have investigated water loss from, and ion regulation within, the hemolymph and tissues of five replicate populations of Drosophila melanogaster that have undergone laboratory selection for enhanced desiccation resistance (i.e. the D populations). We compared the patterns and rates of water loss and the ion content of the D populations prior to and during desiccation with those of five replicate control (C) populations. The net rate of water loss in the C flies was approximately 3-fold greater than that of the D flies during the initial hours of desiccation. After 8 h, both C and D flies had considerable reductions in water loss rate. During 24 h of desiccation, the tissue water content of the D flies was conserved, while the C flies were faced with significant loss of tissue water during the initial 8 h of desiccation. We propose that the increased hemolymph volume of the D flies plays a role in buffering water loss from the tissues. One consequence of this large hemolymph pool is that the hydrated D flies contained approximately seven times more sodium within the hemolymph than did the hydrated C flies. Despite a continual loss of hemolymph volume in the D flies during lengthy periods of desiccation, the sodium content of the hemolymph was significantly reduced only during a single event. We provide evidence that the regulation of extracellular sodium, as well as chloride, occurred via excretory processes during desiccation. In addition, whole-body potassium was not significantly decreased in the D flies during desiccation but was reduced (i.e. excreted) in the C flies; hence, we suggest that the potassium content paralleled tissue water level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster.

We investigated physiological characters associated with water balance in laboratory populations of Drosophila melanogaster selected for resistance to desiccating conditions for over 100 generations. Five replicate, outbred, desiccation-selected (D) populations were compared with their control (C) populations. Water loss rates of female D flies were approximately 40% lower than those of C femal...

متن کامل

Osmotic regulation in adult Drosophila melanogaster during dehydration and rehydration.

We have examined the osmoregulatory capacities of laboratory populations of the insect Drosophila melanogaster by measuring hemolymph osmotic concentration during desiccation and upon recovery from a bout of desiccation. Recovery treatments entailed allowing the flies access to distilled water, a saline solution or a saline+sucrose solution after a desiccation bout shown to reduce hemolymph vol...

متن کامل

Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster

Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system.  Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

Toxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)

Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2003